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Abstract
Reversible logic plays a fundamental role both in ultra-low power electronics
and in quantum computing. It is therefore important to have an insight into the
structure of the group formed by the reversible logic gates and their cascading
into reversible circuits. Such insight is gained from constructing chains of
maximal subgroups. The subgroup of control gates plays a prominent role, as
it is a Sylow 2-subgroup.

PACS numbers: 02.10.Ab, 02.20.−a, 03.67.Lx, 84.30.Bv

1. Introduction

Conventional computers are built from basic building blocks, such as the AND, NAND, OR, NOR
and XOR gates. Such logic operations are logically irreversible. This means that, if we forget
the value of the two inputs, knowledge of the output is not sufficient to calculate backwards
and to recover the value of the inputs.

According to Landauer’s principle [1–5], logic computations that are not reversible,
necessarily generate heat, i.e. kT log(2), for every bit of information that is lost. Here k is
Boltzmann’s constant and T the temperature. For T equal to room temperature, this quantum
of heat is small, i.e. 2.9 × 10−21 J, but non-negligible. In order to produce zero heat, a
computer is only allowed to perform reversible computations. Such a logically reversible
computation can be ‘undone’: the value of the output suffices to recover what the value of
the input ‘has been’. The hardware of such a reversible computer cannot be constructed
from the conventional, i.e. irreversible gates. In contrast, it consists exclusively of logically
reversible building blocks. The number of output columns of a reversible truth table necessarily
equals its number of input columns. We call this number the ‘logic width’ of the gate.

The truth table of a logic gate of width w consists of 2w lines, each containing two
w-bit numbers: the w-bit input (A1, A2, . . . , Aw) and the w-bit output (P1, P2, . . . , Pw). For
convenience, all possible inputs, ranging from (0, 0, 0, . . . , 0) to (1, 1, 1, . . . , 1), are ordered
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A P

0 1
1 0

(a)

A1A2 P1P2

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

(b)

A1 A2 A3 P1 P2 P3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(c)

Figure 1. Feynman’s reversible truth tables: (a) NOT, (b) CONTROLLED NOT and (c) CONTROLLED
CONTROLLED NOT.

arithmetically. Such a gate is reversible if and only if all 2w output numbers form a permutation
of the 2w input numbers. Hence, there exist exactly (2w)! different reversible gates of width
w. We now define the operation of cascading two gates (g2 following g1) of equal width: we
simply bring the output Pi of the first gate g1 to the corresponding input Ai of the second gate
g2, for each i satisfying 1 � i � w. The set of reversible gates of width w, together with
the operation of cascading, forms a group Rw, isomorphic to the symmetric group S2w

(of degree 2w and order (2w)!), the symmetric group Sn being defined as the group of all
permutations of n elements. The cascading of two gates is not commutative; the cascading of
more than two gates is associative. The number of gates cascaded, we call the depth of the
computation.

Feynman [6, 7] introduced three particular reversible gates: the NOT, the CONTROLLED NOT
and the CONTROLLED CONTROLLED NOT (see figure 1). These truth tables express the following
boolean relations:

P = NOT A

for the NOT gate,

P1 = A1 P2 = A1 XOR A2

for the CONTROLLED NOT gate and

P1 = A1 P2 = A2 P3 = (A1 AND A2) XOR A3

for the CONTROLLED CONTROLLED NOT gate. Because the output lines of the truth table of a
reversible gate are just a permutation of the input lines, the truth table can be written in a
condensed permutation notation. The NOT gate is represented by the permutation (1, 2) of the
elements {1, 2}. The CONTROLLED NOT is the permutation (3, 4) of the elements {1, 2, 3, 4}
and the CONTROLLED CONTROLLED NOT is the permutation (7, 8) of {1, 2, 3, 4, 5, 6, 7, 8}. The
permutation of a cascade of two gates (g2 following g1) is the product g2 · g1 of the two
corresponding permutations.

Feynman’s concept is extrapolated by Toffoli [8]. The gate, which Toffoli called the
AND/NAND function of order w, was renamed later, in the framework of quantum computing
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A1 A2 A3 P1 P2 P3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

(a)

A1 A2 A3 P1 P2 P3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

(b)

A1 A2 A3 P1 P2 P3

0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 1 0 1

(c)

Figure 2. Three special truth tables within R3: (a) the follower, (b) an exchanger and (c) an
inverter.

[9, 10], as the CONTROLLEDq NOT, a gate of width w = q + 1, satisfying

Pi = Ai for all i ∈ {1, 2, . . . , w − 1}
Pw = (A1 AND A2 AND · · · AND Aw−1) XOR Aw.

Its permutation notation is (2w − 1, 2w). A further generalization was introduced by Desoete
and De Vos [11, 12], in the framework of ultra-low power electronics:

Pi = Ai for all i ∈ {1, 2, . . . , w − 1}
Pw = f (A1, A2, . . . , Aw−1) XOR Aw

where f denotes an arbitrary boolean function of q = w − 1 boolean arguments. Such a gate
is called a simple control gate. Now, there exist 22q

different boolean functions of q boolean
variables. Together with the XOR operation, they form an Abelian (i.e. commutative) group Bq ,
isomorphic to Z2q

2 , where Z2 is the cyclic group of order 2 (i.e. the group consisting of the two
permutations ( ) and (1, 2) of the two elements {1, 2}). The set of simple control gates of width
w, together with the operation of cascading, forms a group cw , isomorphic to Bw−1. A simple
control gate is represented by a permutation consisting of a product of disjoint transpositions
of the form (2i − 1, 2i) with any integer i satisfying 1 � i � 2w−1. Therefore, the group of
simple control gates can also be interpreted as the wreath product of Z2 with 1w−1. Indeed,
in such a product the elements {1, 2, 3, 4, . . . , 2w − 1, 2w} are partitioned into subsets of two
elements, i.e. into {{1, 2}, {3, 4}, . . . , {2w −1, 2w}}, the group Z2 acting within the subsets and
the group 1w−1 acting between the subsets. Here, 1n represents the trivial group consisting of
only the identity gate of width n (see figure 2(a) for the example n = 3).

Finally, the concept of simple control gates can be generalized towards control gates
[11, 12]. A control gate of width w satisfies the relations:

Pi = fi(A1, A2, . . . , Ai−1) XOR Ai for all i ∈ {1, 2, . . . , w}
where fi is an arbitrary boolean function of i − 1 variables. Figure 3(a) shows a diagram of a
control gate of width w = 3. Together with the operation of cascading, the control gates form
a (non-Abelian) group Cw of order 2 × 22 × 23 × · · · × 22w−2 × 22w−1 = 22w−1, isomorphic
to the semidirect product Bw−1 : Bw−2 : · · · : B2 : B1. In the next section, we will see that the
order of Cw , i.e. 22w−1, reveals that Cw is nothing else but one of the Sylow 2-subgroups
of S2w .
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Figure 3. The control group C3: (a) arbitrary gate and (b) seven generating gates.

It is clear that simple control gates form a special case of control gates, with all fi = 0
except fw . As an example, the CONTROLLED CONTROLLED NOT is an element of the group C3

with f1 = 0, f2(A1) = 0 and f3(A1, A2) = A1 AND A2.
Control gates are attractive components,because they are easy to implement into hardware.

Applying branch-based logic [13], i.e. basically wiring its control function as a sum of
minterms, a simple control gate of width w needs an appropriate series-and-parallel connection
of up to (w − 1)2w switches, depending on the particular control function f [12]. Thus a
control gate can be implemented by combining up to (w − 2)2w+1 + 4 switches, depending on
the particular set of control functions {f1, f2, . . . , fw}. Applying Shannon decomposition can
reduce the number of switches [11].

2. Sylow 2-subgroups of S2n

We now remark that the order of S2n can be written as

(2n)! = 2x(n) · y(n)

where we assume that x(n) is the ‘true’ exponent of 2 in the factorization of (2n)!, i.e. y(n)

is odd. The value of x(n) can easily be calculated, as it equals the number of even factors in
1 × 2 × 3 × 4 × · · · × (2n − 1) × 2n, augmented with the number of quadruple factors in it,
etc. Thus

x(n) = 2n

2
+

2n

4
+ · · · + 1 = 2n−1 + 2n−2 + · · · + 1 = 2n − 1.

Thus the number 2x(n) equals the order of the subgroup Cn. We may conclude that the group
of control gates is one of the Sylow 2-subgroups of the group Rn of reversible gates. Indeed,
Sylow’s first theorem states that

for every finite group and for every prime p which divides the order of the group,
there exists at least one subgroup of order pm, where m is the largest integer for which
pm divides the order of the group; such a subgroup is called a Sylow p-subgroup.
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Figure 4. The three Sylow 2-subgroups of the symmetric group S4.

Sylow’s second theorem states that

the number of Sylow p-subgroups is congruent to 1 modulo p, i.e. a multiple of p
plus one.

In our case (p = 2), this implies that the number of Sylow 2-subgroups is odd. Further,
Sylow’s third theorem states that

the number of Sylow p-subgroups divides the order of the group.

In our case, this implies that the number of Sylow 2-subgroups divides y(n). It equals the
order of the parent group divided by the order of the normalizer of the subgroup. According to
a theorem of Cárdenas and Lluis [14], the normalizer of a Sylow p-subgroup Gn of Spn equals
(Zp−1)

n ∗ Gn, where ∗ stands for split extension. For the case p = 2, we can conclude that the
normalizer is the subgroup Gn itself. Hence, the number of Sylow 2-subgroups is (2n)!/2x(n),
i.e. y(n) itself.

The value x(w) = 2w − 1 thus explicitly shows the fact that Cw is a Sylow 2-subgroup
of Rw . As an example, figure 4 displays the case of n = 2, where R2 (isomorphic to S4) has
4! = 23 · 3 = 24 elements and C2 has 23 = 8 elements. The other two Sylow 2-subgroups,
conjugate to C2, are (2, 3) · C2 · (2, 3) and (1, 3) · C2 · (1, 3). This accords with the fourth
theorem of Sylow stating that

any two Sylow p-subgroups are conjugate.

For more details, the reader is referred to the existing literature on the Sylow p-subgroups
of the symmetric group Spn with p an arbitrary prime number [15–19].

3. Generating the boolean group Bq

Among the 22q

boolean functions of q arguments, there are 2q functions having only one 1 in
the output column of the truth table. See the functionsϕ1(A1, A2) = A1 ANDA2, ϕ2(A1, A2) =
A1 AND (NOT A2), ϕ4(A1, A2) = (NOT A1) AND A2 and ϕ8(A1, A2) = (NOT A1) AND (NOT A2)

in table 1, for the case q = 2. Such functions we call minterm functions. In general, a minterm
has the form

Ã1 AND Ã2 AND · · · AND Ãn (1)

where the notation Ãi stands for ‘either Ai or NOTAi’.
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Table 1. The 16 different functions ϕ of two boolean variables A1 and A2. The four columns are
ordered according to the arithmetic order of the inputs (A1, A2), whereas the 16 rows are ordered
according to the arithmetic order of the outputs ϕ(A1, A2). Note that ϕ1 is the AND function, ϕ6 is
the XOR function, ϕ7 is the OR function, ϕ8 is the NOR function and ϕ14 is the NAND function.

A1A2 0 0 0 1 1 0 1 1

ϕ0 0 0 0 0
ϕ1 0 0 0 1
ϕ2 0 0 1 0
ϕ3 0 0 1 1
ϕ4 0 1 0 0
ϕ5 0 1 0 1
ϕ6 0 1 1 0
ϕ7 0 1 1 1
ϕ8 1 0 0 0
ϕ9 1 0 0 1
ϕ10 1 0 1 0
ϕ11 1 0 1 1
ϕ12 1 1 0 0
ϕ13 1 1 0 1
ϕ14 1 1 1 0
ϕ15 1 1 1 1

The reader will easily verify that the minterm functions generate all elements of the group
Bq . In other words, each function f can be written as a XOR of minterm functions. For
example, in table 1, we have

ϕ7 = ϕ1 XOR ϕ2 XOR ϕ4.

This property is a variant of the well-known theorem that any boolean function can be written
as a sum (i.e. an OR) of minterms.

If we make an ordered set by taking the identity function ϕ0 and subsequently adding
the minterm functions ϕ1, ϕ2, ϕ4, . . . , ϕ22q −1 , we generate a chain of subsequent subgroups of
index 2. The first subgroup 1 is the trivial subgroup consisting only of the identity element;
the following consists of the identity function and the AND function ϕ1; . . . ; the last subgroup
is the whole group Bq :

1 = {ϕ0} ⊂ {ϕ0, ϕ1} ⊂ {ϕ0, ϕ1, ϕ2, ϕ3} ⊂ · · · ⊂ {ϕ0, ϕ1, . . . , ϕ22q −2, ϕ22q −1} = Bq .

There are 2q + 1 links in the chain. The chain is a chain of stabilizers and the elements
ϕ1, ϕ2, ϕ4, . . . are its strong generators [20]. This means the following: each finite group is
isomorphic to some group of permutations of a set of elements (here Bq is isomorphic to a
permutation group of 2q+1 elements); each stabilizer permutes more elements of the set than the
previous stabilizer, i.e. the stabilizer to the left of it in the chain (equivalently, each stabilizer
fixes more elements than the stabilizer to its right). We thus have not only the generators of
Bq , but also the generators for each link in the chain. Such strong generators are powerful
tools for computational group theory [20].

Instead of the 2q minterms, we can apply equally well the 2q piterms of the Reed–Muller
expansion [21]. These have also the form (1), but with another meaning for Ãi : it stands for
‘either Ai or 1’. In our example (q = 2), the piterms are ϕ1, ϕ3, ϕ5 and ϕ15, the Reed–Muller
expansion of ϕ7 now being

ϕ7 = ϕ1 XOR ϕ3 XOR ϕ5.
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4. Generating the group of control gates

The minterm procedure of the previous section can, of course, be applied to generate the group
cw of simple control gates of width w = q + 1. In order to generate the group Cw of control
gates, we choose generators as follows:

• First we take the control gate with all control functions fi equal to zero, i.e. the identity
gate.

• Then we take control gates with control functions f1, f2, . . . and fw−1 all equal to zero,
but fw equal to ϕ2j with j subsequently equal to 0, 1, 2, 3, . . . and 2q − 1.

• Next we choose all control functions fi equal to zero, except fw−1, which is equal to ϕ2j

with j subsequently equal to 0, 1, 2, 3, . . . and 2q−1 − 1.
• . . .

• We choose all control functions fi equal to zero, except f2, which is equal to ϕ2j with j

subsequently equal to 0 and 1.
• Finally we choose all control functions fi equal to zero, except f1, which is equal to

ϕ20 = ϕ1 = 1.

In this way we generate the whole group by stepwise enlarging the subgroup by an index equal
to 2. The resulting chain consists of 2w links:

(2w−1+1) links
︷ ︸︸ ︷

1w ⊂ fw ⊂ · · · ⊂ cw ⊂ · · · ⊂ Cw
︸ ︷︷ ︸

2w−1 links

.

Here fw denotes the subgroup of order 2 consisting of the w-bit follower and the
CONTROLLEDw−1 NOT gate. Figure 3(b) gives the diagrams of the seven generators of the
group C3.

The reader can easily construct an analogous chain, applying a piterm procedure.

5. Generating the group of reversible gates

In order to enlarge Cw further to the whole group Rw, we have to add generators which are
not control gates. In order to find the groups between Cw and Rw , we start from the Rw side,
by looking for a maximal subgroup of it (a maximal subgroup M of a group G being defined
by the fact that M ⊂ G and there exist no subgroup N of G satisfying M ⊂ N ⊂ G).

After a theorem independently given by O’Nan and Scott [22, 23], any maximal subgroup
of a symmetric group Sn is either isomorphic to the alternating group An (defined as the
group of all even permutations of n elements) or is a member of one of six special classes.
Here we pick out one of these classes: maximal subgroups of Smk of degree mk (with both
m > 1 and k > 1) which are isomorphic to a wreath product of a symmetric group of degree
m and a symmetric group of degree k. Applying the theorem for m = 2a and k = 2w−a,
with a an integer satisfying 1 � a � w − 1, we find that there exist maximal subgroups of
Rw isomorphic to the wreath product of S2a and S2w−a . In order to construct such product,
we partition the set of elements {1, 2, 3, . . . , 2w} into subsets of 2a subsequent elements, i.e.
into {{1, 2, . . . , 2a}, {2a + 1, 2a + 2, . . . , 2a+1}, . . . , {2w − 2a + 1, 2w − 2a + 2, . . . , 2w}}. The
resulting wreath product S2a wr S2w−a is of the order

order (S2a wr S2w−a ) = [order (S2a )]degree (S2w−a ) × order (S2w−a )

= [(2a)!]2w−a × (2w−a)!
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Figure 5. The chain of subgroups of the reversible group R2.

= [2x(a) · y(a)]2w−a × 2x(w−a) · y(w − a)

= 2x(w) · [y(a)]2w−a · y(w − a).

Thus the order of a maximal subgroup of Rw has the same true power of 2 as the order of Rw

itself, but fewer odd prime factors.
If we choose a = 1, i.e. if we divide the set of elements into duos, we generate a

subgroup isomorphic to S2 wr S2w−1 , of order 2x(w) · y(w − 1). Next we can take duos of duos
{{{1, 2}, {3, 4}}, . . .}, leading us to the product S2 wr ( S2 wr S2w−2 ), of order 2x(w) · y(w − 2).
Proceeding further like this, we build a descending chain of subgroups of subsequent orders
2x(w) · y(w), 2x(w) · y(w − 1), 2x(w) · y(w − 2), . . . , 2x(w) · y(2) and 2x(w) · y(1) = 2x(w). The
final subgroup, isomorphic to S2 wr (S2 wr (S2 wr (· · · (S2 wr S2) · · ·))), is nothing else but
the control group, isomorphic to Zx(w)

2 .
Together with the result of section 4, this finally yields a chain consisting of 2w + w − 1

links:
(2w−1+1) links

︷ ︸︸ ︷

1w ⊂ fw ⊂ · · · ⊂ cw ⊂ · · · ⊂
w links

︷ ︸︸ ︷

Cw ⊂ · · · ⊂ Rw .
︸ ︷︷ ︸

2w−1 links
Figure 5 illustrates the case w = 2, with subsequent generators ( ), (3, 4), (1, 2), (1, 3) (2, 4)
and (2, 3), generating subsequent subgroups of orders 1, 2, 4, 8 and 24. Table 2 illustrates
the case w = 3, giving the subsequent generators both by their permutation notation and by
the boolean expressions of their outputs. In the latter, we use the short-hand notation X for
NOTX. The last column gives the order of the generated subgroup. The reader will easily link
this table to figure 1.

Note that a convenient set of w − 1 generators for the subchain Cw ⊂ · · · ⊂ Rw is
provided by a set of strong generators of the subgroup of exchangers. Exchangers are defined
as gates with truth tables merely consisting of an exchange of columns. Thus the outputs
P1, P2, . . . , Pw are a permutation of the inputs A1, A2, . . . , Aw . Figure 2(b) gives an example
for w = 3, where P1 = A1, P2 = A3 and P3 = A2, i.e. where the second and third inputs are
permuted. Note that the permutation notation of this gate is not (2, 3), but (2, 3) (6, 7). In
order to distinguish permutations of columns of a truth table from permutations of its rows,
we will denote column permutations with a semicolon instead of a comma. Thus we write

(2; 3) = (2, 3) (6, 7).
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Table 2. The generators of R3, using minterms followed by exchangers.

P1 P2 P3 #

( ) A1 A2 A3 1 = 1
(7,8) A1 A2 (A1 AND A2) XOR A3 2 = 2
(5, 6) A1 A2 (A1 AND A2) XOR A3 22 = 4
(3, 4) A1 A2 (A1 AND A2) XOR A3 23 = 8
(1, 2) A1 A2 (A1 AND A2) XOR A3 24 = 16
(5, 7) (6, 8) A1 A1 XOR A2 A3 25 = 32
(1, 3) (2, 4) A1 A1 XOR A2 A3 26 = 64
(1, 5) (2, 6) (3, 7) (4, 8) A1 A2 A3 27 = 128
(1;2) = (3, 5) (4, 6) A2 A1 A3 27 · 3 = 384
(2;3) = (2, 3) (6, 7) A1 A3 A2 27 · 32 · 5 · 7 = 40 320

Table 3. The generators of R3, using piterms followed by exchangers.

P1 P2 P3 #

( ) A1 A2 A3 1 = 1
(7, 8) A1 A2 (A1 AND A2) XOR A3 2 = 2
(5, 6) (7, 8) A1 A2 A1 XOR A3 22 = 4
(3, 4) (7, 8) A1 A2 A2 XOR A3 23 = 8
(1, 2) (3, 4) (5, 6) (7, 8) A1 A2 1 XOR A3 24 = 16
(5, 7) (6, 8) A1 A1 XOR A2 A3 25 = 32
(1, 3) (2, 4) (5, 7) (6, 8) A1 1 XOR A2 A3 26 = 64
(1, 5) (2, 6) (3, 7) (4, 8) 1 XOR A1 A2 A3 27 = 128
(1;2) = (3, 5) (4, 6) A2 A1 A3 27.3 = 384
(2;3) = (2, 3) (6, 7) A1 A3 A2 27 · 32 · 5 · 7 = 40 320

One should be aware that this equality is only valid within the w = 3 framework. Indeed, if
w = 2, then (2; 3) is meaningless, whereas (2; 3) = (3, 5) (4, 6) (11, 13) (12, 14) for w = 4.
The permutation notation of an arbitrary exchange gate has the form of a product of 2w−2

disjoint transpositions. The exchangers (together with the identity gate) form a group Ew of
order w!, which is a subgroup [24–26] of Rw, and is isomorphic to the symmetric group Sw .

We remind that the subgroup Cw only allows permutations within the duos
{1, 2}, {3, 4}, . . . , {2w − 1, 2w}. Adding the generator (1; 2) to Cw allows also
some permutations between the four quarters {1, 2, . . . , 2w−2}, {2w−2 + 1, 2w−2 +
2, . . . , 2w−1}, {2w−1 + 1, 2w−1 + 2, . . . , 2w−1 + 2w−2} and {2w−1 + 2w−2 + 1, 2w−1 + 2w−2 +
2, . . . , 2w}; the next generator, i.e. (2; 3), introduces permutations between the eight eighths;
etc, up to generator (w − 1; w). In our example, S2 wr (S2 wr S2) is thus inflated subsequently
to S2 wr S4 and to S8.

Table 3 is the variant of table 2, the minterm expansions being replaced by the
corresponding Reed–Muller expansions.

It should be stressed that the two chains of maximal subgroups of Rw , we have
generated above, are, by far, not the only possible chains of maximal subgroups. For
example, the partial chain between Cw and Rw can be replaced by another one, resulting
from choosing a = w − 1, i.e. from dividing the set of elements {1, 2, 3, . . . , 2w} into
two halves: {{1, 2, . . . , 2w−1}, {2w−1 + 1, 2w−1 + 2, . . . , 2w}}, leading to S2w−1 wr S2, of order
2x(w) · [y(w − 1)]2. Proceeding further to (S2w−2 wr S2) wr S2, etc, this eventually leads to
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Table 4. The generators of R3, using exchangers before minterms.

P1 P2 P3 #

( ) A1 A2 A3 1 = 1
(2;3) = (2, 3) (6, 7) A1 A3 A2 2 = 2
(1;2) = (3, 5) (4, 6) A2 A1 A3 2 · 3 = 6
(1, 5) (2, 6) (3, 7) (4, 8) A1 A2 A3 24 · 3 = 48
(5, 7) (6, 8) A1 A1 XOR A2 A3 26 · 3 · 7 = 1344
(7, 8) A1 A2 (A1 AND A2) XOR A3 27 · 32 · 5 · 7 = 40 320

subgroups of subsequent orders 2x(w) ·y(w), 2x(w) · [y(w−1)]2, 2x(w) · [y(w−2)]4, . . . , 2x(w) ·
[y(2)]2w−2

and 2x(w) · [y(1)]2w−1 = 2x(w).
In order to generate such a chain, we take the same strong generators of Sw , but in

the opposite order, i.e. first (w − 1; w), then (w − 2; w− 1), etc, up to (1; 2), introducing
subsequently permutation within quartettes, within octets, etc. In our example w = 3, if we
first introduce generator (2; 3) and then generator (1; 2), then the order of the last but one
subgroup is indeed 27 · 32 = 1152, instead of 27 · 3 = 384, as in table 2. Thus here (S2 wr S2)

wr S2 is subsequently inflated to S4 wr S2 and to S8.

6. Cheap generating sets

In sections 4 and 5, we generated the group Rw of reversible logic gates of width w in a
mathematically ‘natural’ way. In technology, however, things go differently. Indeed, for
technical implementations, different elements of Rw do not have the same ‘price’. Some gates
are easier to implement in hardware than others. Therefore, in practical situations, a designer
tries to generate the whole group with as much ‘cheap’ generators as possible.

In any technology the subgroup Ew is easy to implement, as it performs only routing of bit
streams. In many technologies, also the group of inverters Iw can be built at low price. So, in
many cases, we may assume that both routings and inversions are easily realizable [27]. This,
for example, is the case in r-MOS [28–30], a reversible version of dual-line pass-transistor
logic [31], as well as in other recovery logics, such as split-level charge recovery logic (SCRL)
[32], energy-recovery logic (ERL) [33] and reversible energy recovery logic (RERL) [34].

An inverter is a gate where an output Pi is either equal to its corresponding input Ai

or to latter’s inverse NOT Ai . The inverters of width w form a subgroup [25] of Rw of
order 2w, which is isomorphic to Zw

2 . Figure 2(c) gives an example for w = 3, where
P1 = A1, P2 = NOT A2 and P3 = A3, i.e. where the second input is inverted. The inverters
can also be interpreted as control gates with control functions that are dependent on zero
variables: P1 = 0 XOR A1, P2 = 1 XOR A2 and P3 = 0 XOR A3. Next in complexity come
simple control gates controlled by one variable, by two variables, etc. We thus build up the
whole group Rw in the following way:

w links
︷ ︸︸ ︷

1w ⊂ · · · ⊂ Ew ⊂
w links

︷ ︸︸ ︷

Iw : Ew ⊂ · · · ⊂ Rw .

The total chain consists of 2w links. The subgroup Fw = Iw : Ew is the semidirect product of
Iw and Ew and has been introduced before [25]. It has w!2w elements.

Table 4 illustrates the case w = 3. The reader will note that, after the introduction of the
exchange generators, the three Feynman primitives are added. Comparison with table 2 reveals
that now the odd prime factors of (2w)! start appearing before all factors 2 are generated.
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Table 5. The generators of R3, using exchangers before one minterm.

P1 P2 P3 #

( ) A1 A2 A3 1 = 1
(2; 3) = (2, 3) (6, 7) A1 A3 A2 21 = 2
(1; 2) = (3, 5) (4, 6) A2 A1 A3 21 · 3 = 6
(1, 5) (2, 6) (3, 7) (4, 8) A1 A2 A3 24 · 3 = 48
(7, 8) A1 A2 (A1 AND A2) XOR A3 27 · 32 · 5 · 7 = 40 320

Instead of enlarging the subset Ew with subsequently more expensive CONTROLLEDi NOTs
(with i subsequently equal to 0, 1, 2, . . . , w − 1), one can also enlarge it to the full group Rw

in only two steps, by adding to the exchangers only the NOT and the CONTROLLEDw−1 NOT.
The resulting chain of subgroups 1w ⊂ · · · ⊂ Ew ⊂ Fw ⊂ Rw has w + 2 links. This is
illustrated in table 5, for the case w = 3. The fact that the exchangers, the NOT, and the
CONTROLLEDw−1 NOT suffice to generate the whole group of reversible gates of width w is
proved by Toffoli [8]. An independent proof, by induction on w, can be found in [35].

How to choose between a generating set as given in table 4 and a set of generators as
given in table 5 depends on the application. The latter choice has the advantage of a small
library of building blocks, the former choice needs a larger library (w − 2 more basic blocks),
but can make some gates (e.g., 192 − 48 = 144 gates in our example w = 3) in a cheaper way
(e.g., with fewer transistors and thus with less expensive silicon area).

We remark that the w strong generators for generating the w! exchangers can be replaced
by two generators. Indeed, the symmetric group Sw can be generated [24, 36] by one
transposition (w − 1; w) and the w-fold cycle (1; 2; 3; . . . ; w − 1; w). This leads to the short
subgroup chain 1w ⊂ ew ⊂ Ew ⊂ Fw ⊂ Rw, where ew is the subgroup of degree 2 consisting
of the w-bit follower and the w-bit gate where the last two bits are exchanged. The chain has
subsequent orders 1, 2, w!, w!2w and (2w)!.

One could finally remark that not only Sw , but also S2w can be generated by only two
generators, leading to the minimum length chain 1w ⊂ fw ⊂ Rw, with subsequent orders
1, 2 and (2w)!. However, for practical applications, we lack a simple implementation of the
generator (1, 2, 3, . . . , 2w − 1, 2w).

7. Even generating sets

As mentioned incidentally in section 5, the alternating group A2w is a maximal subgroup of
S2w . We define the even reversible gates as the subgroup of the reversible gates consisting of
all gates that are represented by an even permutation. This subgroup is, of course, isomorphic
with the alternating group. None of the subgroup chains described in sections 5 and 6 contains
the group of even gates. In the example of table 2, the reason is obvious: the odd generators
(7, 8), (5, 6), etc, make it impossible that the last subgroup (before R3) in the chain would be
even. In tables 4 and 5, all generators, except the last one, are even. Nevertheless the last but
one subgroup in the subgroup chain is not isomorphic to A8.

A simple way to construct a chain of subgroups containing the subgroup of even gates as
the last but one link is as follows. We first introduce the generators of the exchange group,
then one inverter. As in section 6, this yields subgroup Fw of order w!2w. Then we add the
generator (2w−1 − 1, 2w−1) (2w − 1, 2w), i.e. the gate that realises

Pi = Ai for all i ∈ {1, 2, . . . , w − 1}
Pw = (A2 AND A3 AND · · · AND Aw−1) XOR Aw.
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For convenience, we call this gate the CONTROLLEDw−2 NOT gate, however not without stressing
that here it is a gate of width w, i.e. not of width w − 1. This additional generator enlarges
Fw to the subgroup of even gates. Toffoli [8] mentions that Fw is inflated to a subgroup of the
group of even gates. The proof that this subgroup is the subgroup of even gates itself, can be
found in the appendix. Next, adding any odd generator suffices to inflate the group of even
gates to the group Rw of all gates. However, it is surprising that this procedure is only valid
for widths w of four or larger. Indeed:

• For w = 2, the CONTROLLEDw−2 NOT is nothing else but the NOT, i.e. the inverter. The
exchangers, together with the inverter, generate the subgroup I2 : E2 of order 2!22 = 8,
whereas A4 is of order 4!/2 = 12.

• For w = 3, the CONTROLLEDw−2 NOT is the CONTROLLED NOT. The exchangers, together
with the NOT and the CONTROLLED NOT, generate a subgroup of order 1344 (see table 4),
whereas A8 is of order 8!/2 = 20 160.

A variant of the last generator set, resulting in exactly the same subgroup chain, is found
by replacing the CONTROLLEDw−2 NOT by the CONTROLLED2 NOT:

Pi = Ai for all i ∈ {1, 2, . . . , w − 1}
Pw = (Aw−2 AND Aw−1) XOR Aw

with permutation notation (7, 8) (15, 16) (23, 24) · · · (2w − 1, 2w). This fact is proved by
Toffoli [8] and independently by Raa [35]. Also this theorem is only valid for w � 4. Indeed,

• for w = 2, the CONTROLLED2 NOT is meaningless;
• for w = 3, the exchangers, together with the NOT and the CONTROLLED2 NOT, generate

the full group R3 of order 40 320 (see table 5), whereas A8 is of order 20 160.

8. Beyond binary logic

In the above discussions, we have implicitly assumed that digital logic is a synonym for binary
logic. However, there also exist logics based on digital numbers that can have r different
values. The integer r is called the radix of the logic. Besides the well-known case r = 2
(binary logic), also the case r = 3 (ternary logic) is applied in digital computing [37–40]. We
will restrict ourselves here to prime radices.

It is clear that the results in previous sections can easily be extrapolated towards arbitrary
prime radix p. The group of reversible logic gates is now of order (pw)!. Its Sylow p-subgroups
of order px(w), with

x(w) = pw−1 + pw−2 + · · · + p + 1 = pw − 1

p − 1

will now play the central role in the classification of the subgroups. The role of Z2 is taken
over by Zp.

For r = 3, figure 6 shows two different NOT gates and two different CONTROLLED NOT
gates. The two NOTs, together with the one-trit follower, form a group isomorphic with Z3, a
subgroup of the whole group of reversible one-trit gates (which is a group isomorphic with
S3 and thus of order 3! = 6). The two CONTROLLED NOTs, together with the two-trit follower,
also form a group isomorphic with Z3, a subgroup of the whole group of reversible two-trit
gates (which is a group isomorphic with S32 and thus of order (32)! = 9! = 362 880).

Al-Rabadi and Perkowski [41] give a detailed study of more complex reversible multi-
valued gates.
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A P

0 1
1 2
2 0

(a)

A P

0 2
1 0
2 1

(b)

A1A2 P1P2

0 0 0 0
0 1 0 1
0 2 0 2
1 0 1 0
1 1 1 1
1 2 1 2
2 0 2 1
2 1 2 2
2 2 2 0

(c)

A1A2 P1P2

0 0 0 0
0 1 0 1
0 2 0 2
1 0 1 0
1 1 1 1
1 2 1 2
2 0 2 2
2 1 2 0
2 2 2 1

(d)

Figure 6. Ternary truth tables: (a) NOT, (b) NOT, (c) CONTROLLED NOT and (d) CONTROLLED NOT.

9. Conclusion

The group Rw of reversible binary gates of width w has (except for very small w) very many
subgroups and a very complex lattice diagram. From this diagram, we have investigated only
a few sequences of subgroups.

First, we have constructed chains with as many links as possible, i.e. where any subgroup
is a maximal subgroup of the next. This leads to chains of 2w + w − 1 subgroups, where
the subgroup Cw of control gates plays a central role. In ascending order, all indices of the
chain equal 2, up to Cw. After that, all indices are odd, up to Rw itself. The control gates are
particularly interesting

• from a mathematical point of view, because they form one of the Sylow 2-subgroups of
the entire group Rw , and

• from a technological point of view, because there exist straightforward ways to implement
them into hardware, e.g., branches of minterms (see figure 3 and table 2) or branches of
piterms (see table 3).

Secondly, we have constructed short chains, which are therefore generated by a small
set of generators, which therefore can implement an arbitrary element by cascading building
blocks from a small library.

Finally, the reader can easily extrapolate the results of binary logic to any higher radix
logic.

Appendix

Definition. A neighbour 3-cycle of the elements {1, 2, . . . , n} is any 3-cycle of the form
(i, i + 1, i + 2), thus any of the n − 2 cycles (1, 2, 3), (2, 3, 4), . . . , (n − 2, n − 1, n).

Lemma 1. The neighbour 3-cycles generate the group of all even permutations, i.e. the
group An.
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Lemma 2. The subgroup of exchangers Ew , augmented with the NOT gate and the
CONTROLLEDw−2 NOT gate, generates the group of even simple control gates.

Theorem. The subgroup of exchangers Ew , augmented with the NOT gate and the
CONTROLLEDw−2 NOT gate, generates the group of even reversible gates.

The proof is by induction on w:

1. We prove that the theorem is true for w = 4: this fact has been checked with the help of
computer, using the computer algebra package GAP [42].

2. We assume that the theorem is true for w = W and prove it to be true for w = W + 1.
For this purpose, we prove that the exchangers, the NOT, and the CONTROLLEDW−1 NOT
generate the neighbour 3-cycles (i, i + 1, i + 2) for all i satisfying 1 � i � 2W+1 − 2.
Four cases have to be distinguished:

2.1. The case 1 � i � 2W − 2. We make a gate of width W + 1 by combining a
follower of unitary width (P1 = A1) combined with a gate of width W (with inputs
A2, A3, . . . , Aw+1 and outputs P2, P3, . . . , Pw+1) and permutation (i, i + 1, i + 2).
The latter can be generated because

• the CONTROLLEDW−2 NOT can be synthesized because of lemma 2 and
• the exchangers, the NOT and this CONTROLLEDW−2 NOT, suffice to generate

(i, i + 1, i + 2) because of the induction hypothesis.
The combined gate does not have a neighbour 3-cycle as its permutation, but is
represented by the permutation p = (i, i + 1, i + 2) (i + 2W, i + 1 + 2W , i + 2 + 2W).
We cascade four gates of width W + 1, generating the permutation p−1cpc, where c
is an even simple control gate. The gate p−1 can be synthesized because it equals
p2; the gate c can be synthesized because of lemma 2. We choose

• c = (i, i + 1) (i + 4, i + 5), if i is odd,
• c = (i + 1, i + 2) (i + 3, i + 4), if i is even.

In both subcases we find that p−1cpc equals (i, i + 1, i + 2).
2.2. The case 2W + 1 � i � 2W+1 − 2. This case is analogous to case 2.1.
2.3. The case i = 2W − 1. Because of case 2.1, we can generate the neighbour 3-cycle

t = (2W−2 − 1, 2W−2, 2W−2 + 1). We let this gate be preceded by the exchanger e
and be followed by the exchanger e−1, with e = (1; 2; 3), which equals a product
of 2W−1 disjoint 3-cycles (2W−2 + 1, 2W−1 + 1, 2W + 1) · · · (. . . , . . . , . . .). We find
e−1te = (2W−2 − 1, 2W−2, 2W + 1). Now applying 2W − 2W−2 times the identity

(k, k + 1, k + 2) · (k, k + 1, l) · (k, k + 1, k + 2)−1 = (k + 1, k + 2, l)

with l = 2W + 1 and with k subsequently equal to 2W−2 − 1, 2W−2, . . . and
2W − 2, finally yields the 3-cycle (2W − 1, 2W , 2W + 1), i.e. the neighbour 3-cycle
(i, i + 1, i + 2) searched for.

2.4. The case i = 2W . This case is analogous to case 2.3.

3. By virtue of steps 1 and 2, the subgroup of exchangers Ew , augmented with the NOT gate
and the CONTROLLEDw−2 NOT gate, for any w � 4, generates all the neighbour 3-cycles of
the elements {1, 2, . . . , 2w}, and thus, by virtue of lemma 1, all possible even permutations
of {1, 2, . . . , 2w}.
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